HEAT CONDUCTION IN A UNIFORM LAYER
WEAKENED BY A RECTANGULAR CUT-OUT

G. I. Vernikov UDC 536.24

Formulas are obtained by solving a two dimensional boundary-value problem of stationary
heat conduction, which enable one to find an estimate of the weakening of heat insulation of
of layer by a rectangular cut-out,

The weakening of the heat shielding properties of a layer due to the presence of various cut-outs can
be described by the ratio m=q/q; of conduction heat fluxes, in the presence or absence of a cut-out. The
value of m is found in the case of rectangular cut-out.

For example, let there be a rectangular cut-out in an infinite strip of uniform layer adjoining one of
its boundaries (Fig. 1la), and let the temperature on the layer boundaries be constant {{ =0 on the boundary
A'M' and t=t; on the boundary AM). For these stationary conditions one has a boundary-value problem for
the Laplace's equation with boundary conditions of the first kind [1]:

0, zcA'M',

Aw(z) =0; Rew=
- t, z€AM, 1)

In the above w(z) =t +i is the complex heat potential; z =x +iy; ¥ (z) is the heat-stream function,

The above problem can be reduced by conformal mapping to the Dirichlet problem in the upper half-
plane of the variable ¢ =£{ +in. If the layer boundary is mapped into the real £ axis and the points z =0; +;
ic(Fig. 1a) are mapped into the points ¢ =0; 1; += (Fig. 1b) then by the Schwarz formula one obtains

1 g He)dE _fy L— 1
ai ) §—1L i g1

W =

@)

The heat flux which passes through the portion RT of the upper boundary of the layer in the unit of

a N :
time is g=—A 5;‘ dx = — dp= —219 (&) , If there is no cut-out then the heat flow through that
RT RT
portion is g =qy=—2At@/h. Therefore
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m = — arcth, = — arsh ——— ,
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where £ >1 is the image of the end point T; @ =ma/2h.

To find { ; one uses the Schwarz—Christoffel formula [2] for the mapping function:
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where s and p are parameters and C=v (1 —p?)/ (1 — s?is the mapping constant. Bearing in mind the change

of sign of the square root in {4) on different portions of the real £ axis one has
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Fig. 1, The region of the uniform layer (a) weakened by a rectan-
gular cut-out and the corresponding region in the plane of the para-
metric variable (b).
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The elliptic integrals in (5) can be brought to their standard form by respective substitutions: ¢ =sl; { =
Vp? — @’ —&%). Then

p:—g—[K—(l—sz)H (—2”1 — k)] = EF (¢; k) —KE (¢; %) + CksK, (6)

C? 2 T l—p?
— K'E (9; k) —ChsK. (7
Here and below K; K'; F(g; k); E; E'; E{¢; k); H(p; n; k) is the generally adopted notation for complete
and incomplete elliptic integrals of the first, second, and third kinds [4] (the prime indicates that the in-

tegral is taken over the complementary module k'=v1 —~¥); k=s/p; ¢=arcsin p.

2 2

The relations (6) and (7) are now multiplied by K* and K, respectively, and the results are added,
Hence by using the Legendre relation [3] one obtains

=sn(u; k) u=F(g, k) = iK’+%K,
E (g, k) = Ckp -+ [Ed — b(E" — K')/h. (8)

To find the value £ ,=p/sinf one expresses the length of the portion under consideration in terms of
the parameters p and s by using (4)
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For p~1 one has (K'/K~c/b)a =B +g,), & —1/2(u +Vp? zp2s2) p=pr+s® +(1 —p%) (1 — s¥)ecth?@ —B8).
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Fig. 2. A portion of a uniform layer (a) weakened by a periodic se-
quence of slit-like cut-outs and the region in the plane of the para-
metric variable corresponding to (b).

790



TABLE 1. Weakening of the Heat Shielding Properties of a Layer
Depending on Geometric Parameters a/h and d/h of a Rectangular

Cut-Out
a/k 173 } 0,5 1| 1
|
dih 1/3 0,5 0.8 1/3 0,5 0,8 ! 1/3 0,5 0.8
!
my by formula (10) 1,14011,362]2,558{ 1,125 1,317 2,236'1,085 1,207 1,722
mg by formula (20) 1,239 | 1,547 2,660 1,180 | 1,415 (2,426 1,092 {1,219} 1,746

In the case of b—~0 (s—0; k—0) when the cut-out approaches a slit the formulas (8)-(9) simplify to

2
p=siny;, a = arth l/giz—_——p’; i & =V (10— pYcthte .
0

In accordance with (3) one obtains for the case b=0,

1 <shoc\)
m = my = — arsh .
o cosy /

(10)

If, in accordance with the formula (10), the inhomogeneity of the thermal field on the boundaries of
the cut-out is taken into account and the heat flux directly above the cut-out is considered as uniform (qgy =
— 21tgb/c) then for the entire RT portion of the upper boundary of the layer one has approximately

bh b
. mZ‘T(l—‘—)m«r (11)

ac a

Carrying out the calculations with the aid of tables in [4] and using the formulas (4)-(9) for d/h=
0.835; a/h=0.36; b/h=0,036 (to which there corresponds K> =0,31; ¢=80°% 6 =70° results in£y=1.05 and
m =3,292 whereas hy using the approximate formula (11) one finds that the estimate is equal to m = 3,092,

If the insulating layer has several cut-outs, the weakening can be estimated in this case by using
the formula (11). However, the effect of the neighboring cut-outs should be taken into account.

Let us assume that there is a periodic sequence of slit-like cut-outs positioned on the side of the
lower boundary of the layer, the step being 2a. It suffices to consider the thermal field on a portion with
a single cut-out (Fig. 2a) since the boundary lines AA' and MM’ for this portion are the lines of the heat
flux. The region A'ABGLMM' (Fig. 2a) is mapped on the upper half-plane of the variable ¢ (Fig. 2b).

By using the Schwarz—Christoffel formula one obtains

4

i
2 — (a4 i) =G g tdt _GEwH (12)
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where k2 = (¢ —p8)/ (1 —p?); ¢ =arcsin w; W = 2 —1)/ €2 —r?; C; =const.
The point z =ih is mapped into £ =+ (n=1), that is, a =— C;K/V1 —p?. Therefore,
(14_ th—z )K:F(fp, k). 13)
a

The formula (13) is now inverted and subsequent transformations are expressed in terms of the Jacobi el-
liptic functions; this results in

x:sn[(l+ ih“z)x;kJ. (14)

a

The condition (14) is satisfied at the point z =a € =r; ®=+=) if h/a =K'/K. Then

x=sn[K+iK’—iK;k]=—l—dc[iK; k]. 15)
a k a
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Hence by taking into account the correspondence between the points z =id and £ =0(»=1/r) and by using the
Jacobi imaginary mapping [3] one obtains
d ’, ?

If one employs (16) and transforms (15) the mapping function can be represented in the form

T2
;:l/i_;;‘ =r l/l——cnz(—z— K’; k’)cng(fl(; k’). 17

Hence, since z=0 and { =p are the corresponding points one has

d
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Since the mapping parameters p and r are now known, the solution can be calculated with the aid of
the Keldysh—Sedov formulas [2] for a mixed problem in the upper half-plane. It is, however, more con-
venient to consider the complex-potential plane w in which a rectangle with the sides «y and iw, corresponds
to the portions under consideration. The lateral sides of this rectangle are lines of the thermal stream;
the upper and lower sides corresponding to the layer boundaries for that portion are isotherms (=0, t=ty):
q=—2Aty(w/w,). The rectangle with the sides w; and iw, canbe regarded as a uniform portion of the layer
which as regards thermal resistance is equivalent to the original portion with a cut-out in the z plane.

The mapping of this rectangle into the upper halfplane (Fig. 2b) is known [2]:

Kk
E= C,sn [ 0()10) w; ko] (C, = const). (18)
Inthe above C,=ky=r;
o K@)
o, K (19)

Thus the weakening of the layer by slit-like cut-out with the neighboring cut-outs taken into account is
given by

_ hK (r)
K ©0)

where r is given by the formula (16); for.d/h=0.5 one has r =Vk.

In Table 1 the results are given of calculations of mj carried out with the aid of tables given in [5]
by the formula (10) and (20), that is, with or without the neighboring cut-outs taken into account.

Thus, for a/h> 0.5 and d/h < 0.8 one can use the formula (10) with an error which is less than 10%
when m, is calculated for a layer weakened by several rectangular cut-outs.

NOTATION

t, temperature; g, heat flow; b, c, d, h, geometric dimensions of cut-out; 2z, width of layer portion
under consideration; A, coefficient of heat conduction.
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